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Equilibrium properties of one-component liquids are obtainable--as suggested 
by Collins--from the coding procedure in terms of distances between neigh- 
boring molecules. The monatomic case is dealt with first, and consequences 
of some simplifying assumptions are explored. The connection between the 
probability r of an intermolecular distance R and the usual pair distribu- 
tion function is considered. The treatment is then generalized to the case of 
heterogeneous multiatomic molecules. 

KEY W O R D S :  Information theory; liquid state; statistical mechanics; 
thermodynamic properties. 

1. I N T R O D U C T I O N  

Among fundamental approaches to the liquid state, there are two relatively 
much less exploited than the rest: physical models and the informational 
method. These two approaches are also the most recent ones, which partly 
explains their current situation. 

The method of  physical models is frequently associated with the name 
of  Bernal; binary radial distribution function g(R)  curves, obtained by Bernal 
and his colleagues counting distances R between bails, turned out to be 
comparable m to the results obtained for real liquids such as argon using 
X-ray and neutron diffraction techniques. Related studies have been made by 
Scott.(2) As discussed by Pryde, c8~ an interesting result of Scott is reproduction 
by a system of balls of  the volume change on melting of monatomic liquids. 
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Using ellipsoids instead of balls, Godbout  and Sicotte (4) obtained similar 
results; their discussion is in terms of a quantity they call the coefficient of 
space occupancy ~0 : 

~o : NAvo/V (1) 

where V is the molar volume, NA is the Avogadro number, and v0 is the 
proper volume of a molecule. For  a substance which at the temperature of 
0~ crystallizes in a hexagonal or a face-centered cubic lattice the latter 
parameter is given by (4) 

v 0 = 0.7405 V(O~ (2) 

The same parameter q~0 turns out to be useful for considering dielectric 
polarization in liquids/a) In general, the studies of models seem to suggest 
that a liquid may be represented by a compact assembly of irregular poly- 
hedra, with molecules at tops of each polyhedron. An alternative, namely 
placing molecules each in the middle of a polyhedron, has been discussed by 
Finney. (6) In either case spatial distributions of molecules are essential for 
understanding the behavior and properties of liquid phases. 

The suggestion that information theory be applied to the liquid state is 
due to Collins. (7~ He also proposed (7) a coding procedure in terms of distances 
between neighboring molecules, the links forming impenetrable barriers for 
other molecules. This reproduces features inferred from the models: A liquid 
is now represented by an assembly of irregular Delaunay polyhedra, with 
atoms as vertices of each polyhedron. 

The space allotted to the motions of each molecule by such a procedure 
is called a Voronoi polyhedron (or a Dirichlet region, or a Wigner-Seitz cell); 
details of the respective geometric constructions are given by Finney (6) and 
Kiang. (8) The dual relationship between Delaunay and Voronoi polyhedra is 
discussed by Kiang. Apparently the mathematical formalism is the same 
whether dealing with the fragmentation of celestial bodies or with the attri- 
bution of microscopic spaces to molecules; in astrophysics, however, the 
Voronoi figures are more important than those of Delaunay, (8) while for our 
approach the reverse is true. 

The object of the present work is to explore further the informational 
route to understanding liquids. In this context it might be worthwhile to 
recall the superior position of information theory as compared to statistical 
mechanics; we mean by this that the relations of statistical mechanics and 
thermodynamics may be obtained from the theory of information. (9) The 
approach might therefore turn out to be profitable in the long run even if it is 
not the easiest to handle. An indirect continuation of an earlier study TM has 
also been an incentive for undertaking this work. 



Some Properties of the Informational Model of the Liquid State 341 

2. C O D I N G  F O R  M O N A T O M I C  L I Q U I D S  

The case of a two-dimensional liquid with summation over coordination 
numbers has been treated by Collins. (1~ Information concerning the spatial 
distribution of monatomic molecules in a three-dimensional liquid may be 
transmitted over a communication channel in terms of interatomic distances 
(links) R, angles between links, or in a mixed way involving both distances 
and angles. The appearance of a redundant link (the length and location of 
which may be inferred from the data transmitted before) coincides with 
"closing a shell" around a given molecule. Denote by ~b~(R) dR the probability 
that link length is between R and R -? dR for a pair of neighboring molecules 
at least one of  which has the coordination number z. Clearly, we have a certain 
distribution of probabilities ~bgR). We also have a certain distribution of  
probabilities oJ~ of values of  z among atoms (the topological contribution). 
Further, we have the usual momentum or kinetic contribution, which can be 
expressed in terms of probabilities co(p) of momenta p. For  the general or 
informational entropy, assuming the coordination numbers for the individual 
atoms to be statistically independent, we write therefore 

oo 

S -=- S M + S c + S z --= - - 3 N k  co(p) In co(p) dp 
- - c r  

f/ - Nk  F, coz ~b~(R) l n [ ~ . ( R ) / R  21 dR 

- -  N k  ~ co~ In co. (3) 

where N is the number of molecules (taken equal to the number of effectively 
uncorrelated links in the middle term), k is the Boltzmann constant (intro- 
duced since we intend to arrive eventually at the thermodynamic entropy); 
is a measure constant, the same as used in Ref. 10 (for the use of  measures in 
general, see, e.g., Ref. 11). Superscripts M, C, and Z refer to momentum, 
configurational, and topological terms, respectively. 

Consistently with coding in terms of pairs, we represent the configura- 
tional energy U c as a sum of pair interactions; we write for the total energy 

/: /o= U -~ U i -k U c = 3 N  (pZ/2m) co(p) dp + �89 w:z ~b:(R) u(R) dR 

(4) 

where m is the molecular mass and u(R) is the pair interaction potential. 
For  volume we have, correspondingly, 

V = N ~ w~t~ ~ fo B Ra+~(R) dR (5) 
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where each/z~ is a geometric factor which takes care of the spatial configura- 
tion (skewness) and also of the fact that a given atom participates in a number 
of polyhedra. With the volume of a regular tetrahedron of side a given by 
aZ/(2 �9 61/3), one would expect /z~ to be approximately proportional to 
(2" 61/2) -1 . 

The thermodynamic entropy Sr  may be obtained by maximizing 
expression (3) subject to fluctuations of energy and volume. The following 
three normalizations have also to be taken into account: 

f0 co(p) dp = ~b~(R) dR = ~ co~ = 1 (6) 
c o  

Three of the five undetermined multipliers featuring in extremization are 
eliminated in the usual way (~smax/vqr = ~smax /~w  = ~smax/~co z -~-0).  

Two are evaluated from the thermodynamic identities (OS/OV)v = P IT  and 
(OS/O U)v = T -1, where P denotes pressure. The final formula is 

S r  = N k  ln(Q~/~:) -t- ~ N k  ln(2~mkr) § (H/T)  (7) 

The enthalpy H appears here explicitly, and we can immediately rewrite 
Eq. (7) in terms of the Gibbs function G. The function Q, is given by 

I fo  ~ I Q, -- ~ exp - [ln(r 2) q- f2~] r dR 

= [zu(R)/2krl + (mPR" /kr )  

Further, 

r = R~e -~~ RZe - ~  dR 

co(p) = (27rmk T)-l/~ exp(--p2/2mk T) 

(s) 

(9) 

(lO) 

One obtains, as one should, U M = 3NkT/2.  Specification of the parameters 
in (4), (5), and (7) is completed with 

co. = Q21 exp t -  f o  [ln(r ~) + s l ~b. dR} (12) 

As mentioned above, the case of two dimensions has been considered 
by Collins. (1~ The relations of the present section, however, do not represent 
a direct generalization of his treatment to three dimensions. In his approach 
one more constraint, related to the coordination numbers, is imposed upon 
the system [Eq. (42) in Ref. 10]. As compared to the treatment of our Eq. (3), 
this introduces one more Lagrangian parameter in maximizing the entropy 
formula. 

(11) 
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The length distribution functions ~bz(R ) have been introduced first to 
perform coding; from the definition, however, it is fairly evident that there 
should be a connection to the binary radial distribution function g(R) as 
used in diffractometry. Consider a shell of thickness dR around a given 
molecule. According to the definition of g(R), the number of molecules in 
the shell is 4rrR2Ng(R) dR/V; this, of course, is an average, independent of 
the value of z for a given atom. On the other hand, for an atom of 
coordination z we may apparently represent the same number by z~b~(R); this 
should be valid as long as we are inside the range of Delaunay polyhedra of 
a given molecule. Within this range, then, 

co~z~b~(R) -~ 4~rR~(N/V) g(R) (13) 

As for relations valid without limitation on the R range, Collins (1~) 
obtained the exact formula for ~b(R) in terms of number density N / V  for the 
two-dimensional perfect gas. Obtaining such a formula for a three-dimen- 
sional liquid appears prohibitively difficult. 

The unresolved problem in the use of equations such as (4) is, as in the 
two-dimensional case, tl~ that of the highest value of z that ought to be 
included in the summations. Our coordination number resulting from the 
coding procedure in general is not identical with the diffractometric value. 
Even if  the identity would be assured, there are--as discussed by Mikolaj and 
Pings(~3)--no less than four distinct methods of evaluating z from X-ray and 
slow neutron scattering. Unless recourse to topology turns out to be profi- 
table, it will be necessary to seek this information from equilibrium properties 
as known from experiments. 

3. E Q U I L I B R I U M  PROPERTIES  FOR S O M E  SIMPLE 
M O N A T O M I C  CASES 

Collins (~) considered a simplified case of a three-dimensional liquid, with 
the topological contribution S z neglected; he argued that the contribution of 
this term is small, except in the liquid-solid transition region. Accordingly, 
he assumed, instead of (3), a simpler formula 

sj S = - -3Nk  co In co dp -- Nk  ~b ln(~:~b/R 2) dR (14) 
oo 

along with 

U = 3N (pZ/2m) co dp q- �89 ~bu dR 

fo V = Ntz R3~b dR 

(15) 

(16) 
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In the above equations the average coordination number 5 has been 
introduced. The co(p) distribution is the same as in the preceding section 
[Eq. (11)]. The other distribution is given by 

R z 
~b(R) "-Q- exp ( 2kT~:U IzPR 3kT = ) ] (17) 

with 

Q = R e exp 2kT kT 

The thermodynamic entropy formula follows either from the formalism 
of this section or from averaging over coordination numbers in Eq. (7). The 
result is 

Sr = Nk ln(Q/s e) + -~Nk ln(2rrrnkT) q- (H/T) (19) 

The question arises, under what circumstances may the simplified rela- 
tions of this section be valid ? A good reference case is a solid with a periodic 
lattice, where the average 5 is equal to the local coordination number of each 
of the atoms. Decreasing the density should introduce atoms of low coordina- 
tion numbers; at the same time differences between the values of z of neigh- 
boring atoms should increase. One concludes that the approximation may 
be useful for dense fluids, but worse at, say, the vapor-liquid critical region. 

In the present approximation we can also try to relate ~b(R) to g(R) 
within the range of Delaunay polyhedra. By reasoning such as led to (13) we 
obtain 

~b(R) = (4rrRzU/VS) g(R) (20) 

Substituting the last result into the second term of (15), one obtains the 
well-known "standard configurational energy formula": 

U c = (N2/2V) 47rR2ug dR (21) 

One notices also that since u(R)--+ 0 rapidly when R - +  0% one may sub- 
stitute the definite integral in (21) and in the second term of (15) by the 
indefinite one (or vice versa, cf., e.g., Ref. 14), and compare directly the 
respective integrands. 

Further, we can introduce ~b as given by (17) into (16) and, using/~R 3 as 
the independent variable, integrate by parts. The result is 

f0 cx~ PV = N k T -  ~Nz R(du/dR) r dR (22) 
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Substituting (20) into the last result leads to the so-called standard 
pressure equation ~3.z~: 

P V  = N k T  --  (N2/6V) 4~R3(du/dR) g dR (23) 

Following our informational route--we have recovered Eqs. (21) and 
(23), known from the statistical mechanics of fluids. The consistency between 
the two approaches has thus been demonstrated. 

The virial of intermolecular forces W = - - Z ~ # j R ~ j  du(R~)/dR can now 
be written in terms of parameters of the present theory. From the pressure 
equation (22) this is 

W -~ �89 R(du/dR) ~b dR (24) 

The behavior of parameters such as/x and 5, and in particular their 
dependence on volume and temperature, is of interest. The parameter/x may 
be related to the coefficient of space occupancy as defined by (1) through 

= Vo/~oR~ (2s) 

where v0 is given by (2), and the bar denotes the usual system average; it has 
to be remembered that the /~(T) dependence is hidden in (25). As for the 
parameter Q, its volume dependence may be obtained from (19) as 

v N k T  2 2 T  v N k T  

Consider now in more detail the integration range for equations such as 
(16), (18), or (22). The upper limit of infinity is not to be taken literally--see, 
e.g., the discussion in Ref. 15 and also comments following Eq. (21) here. 
Evaluating the distance I within which a molecule contributes to thermo- 
dynamic functions is in general difficult, though an approximate proposal of 
Debye for calculating l 2 should be recalled. ~zr~ In the present treatment 
formation of Delaunay figures assures a cutoff, but the range I clearly varies 
from one molecule to another. Kiang cs~ performed Monte Carlo computations 
for a system of 80 particles on 6400 sites to establish the size distribution of 
random Voronoi polyhedra. As one might have expected, he finds that the 
curve falls fairly rapidly beyond a certain value of R (roughly equal to l, in 
view of the dual character of Voronoi and Delaunay figures). The curve 
remains continuous, though; a tail is present, which should be a consequence 
of random irregularity of the system. 

Returning now to Eq. (22), a special case may be obtained by substitu- 
ting (17) and (18) into (22) and comparing directly the integrands in (18) and 
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in the second term of (22). Dropping integration limits is appropriate for (22), 
but because of the situation just discussed, such a step clearly lacks rigor for 
(18). The consequences are of some interest, however; one obtains 

du/dR = 6(NkT -- PV)/NSR (27) 

Thus, with increasing R, du/dR is predicted to decrease--as it does 
beyond the potential well. One could attempt to integrate Eq. (27). This 
would give u(R) as an inherent part of the model, instead of invoking it from 
the outside. On the other hand, the results would be, at best, useful between 
the potential energy minimum and the "border" of Delaunay figures. 

4. M U L T I A T O M I C  CASE 

We turn now to multiatomic molecules, which for generality will be 
assumed heterogeneous. Thus a molecule contains r segments with 

r = }-" r~ (28) 
Y 

where the summation refers to kinds of segments present. A segment might 
be a single atom or a group of atoms (e.g., the methyl group or a polymeric 
segment). 

We find it very convenient for handling the multiatomic case to introduce 
the internal coordination number, call it ~, which is the number of nearest- 
neighbor segments belonging to the same molecule. Thus, local ~ may vary 
from one segment to another, while the average value ( is fixed for each 
molecule. 

The essential step again is formulating a prescription for coding. We 
propose coding in terms of: (1) distances; (2) angles (for using distances and 
angles see the beginning of Section 2); (3) number given to each molecule; 
(4) internal coordination number; (5) indication of whether or not a given 
segment is connected to the one encoded immediately before; (6) for hetero- 
geneous molecules the kind of segment. We note that in the general case 
indicating connectedness is essential. Consider, say, a two-dimensional 
two-ring molecule with information as in points 1-4 specified; we can still 
have at least two possibilities, 
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and of course we do not propose that the decoder consult independent 
sources (books of chemistry or physics, information which has not been 
transmitted over the channel). 

We are now able to write for the entropy 

S : S ~ + S M + S c-4- S z - j -  S t 

i? = S ~ --  3Nk  w(p)  In oJ(p) dp --  N k  ~, ru 
oo y 

f0 • E r162 In R~ dR - -  N k  E oJ~ In cos -- N k  E ~o, In ms 
y" Z Z--~ 

(29) 

where S ~ denotes internal (e.g., vibrational) contributions, which can be 
calculated by the usual methods; the momentum term is per whole molecule; 
the co~ distribution refers to z -- ~ external contacts of  each segment, and is 
assumed independent of kinds of segments y; similarly, we have introduced 
wz instead of a series of ~o,u. 

We now perform summations over all possible kinds of pairs. Denoting 
a pair of interacting segments by indices y and y' ,  we have for the configura- 
tional energy 

2 E~ r~(z - -  ~ )  ~ r~rv(z - -  ~u)(z - -  ~ , )  u~r ~b~u,(R) dR 
y t  0 

(30) 
Consistent with the above, the volume is given by 

V = 2~ur,j(zNl~-- f=~) ~ Z~, rurr -- ~) ( z  -- ~ , )  f~o Ratb~v(R) dR (31) 

where tb~v(R) is given by the generalization of (20): 

~b~u,(R) = [47rR~Nr~/V(z-  ~)] guv(R) (32) 

The respective generalization of the pressure equation (22) is 

N 
P V  ~- N k T -  

6 Z~  r~(z - -  ~ )  

fo ~ du~u,(R) x ~, ~, r~rr - -  ~ ) ( z  - -  ~ , )  R dR  r dR (33) 
y y r  

5. C O N C L U D I N G  R E M A R K S  

The informational approach seems to have at least one property in 
c o m m o n  with the--unattainable---exact theory o f  the liquid state: the 
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capability to describe all three basic states of  matter. While the main frame- 
work of the theory is constructed, clearly much remains to be done. Informa- 
tion on the behavior of  parameters of  the theory such as/x's and z's and in 
particular on their temperature dependences is essential; this suggests 
recourse to the data of  experimental thermodynamics. 

We have recently embarked on the respective calculational project. 
With a judicious choice o f~  and/~, calculations of U c f rom Eq. (15), V from 
(16), and then approximate prediction of the g(R) curve within the Delaunay 
polyhedron f rom (20) is feasible for argon; the temperature and pressure are 
assumed, and the pair potential u(R) is taken as known. To arrive at well- 
founded conclusions, valid not only for argon, it seems that fairly extensive 
computations might be necessary. While the relations in Section 4 are some- 
how anticipative of  the treatment of  multicomponent systems, mixtures 
should wait for the results of  calculations for pure components. The treat- 
ment of mixtures should include that severe test of any approach to the 
liquid state: prediction of functions of mixing in terms of properties of pure 
components. 
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